

The Impact of Matrix Stiffness and O-GlcNAcylation on YAP Nuclear Localization and Matrix Deposition in Mesenchymal Stem Cells

Ryan Daniels¹, Claudia Loebel, PhD², Thea Ornstein¹, Jason Burdick, PhD², and Robert Mauck, PhD^{1,2} ¹McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA

Results

Introduction

- Yes-associated protein (YAP) is an important transcriptional co-activator in mechanotransduction^{1,2}
- The molecular mechanism by which YAP localizes to the nucleus is poorly understood (Fig. 1)
- Recent studies in cancer biology, have shown that O-linked β -*N*-acetylglucosamine (O-GlcNAc) modifications on YAP are necessary for YAP nuclear localization^{3,4}
- O-GlcNAcylation is a common post-translational modification for cytoplasmic and nuclear proteins⁵

Inhibition of OGT decreases the number of focal adhesions

 We hypothesized that the addition of **O-GICNAc groups on YAP by OGT** promotes nuclear translocation in a mechanotransductive setting.

Figure 1: Working model for YAP regulation. Activation of Rho signaling inhibits YAP antagonists, LATS1/2 and Kinase X. YAP is inhibited by phosphorylation and is subsequently degraded or cytoplasmically retained. Factor X could be acting as a direct partner for YAP nuclear localization or acting as another inhibitor of LATS1/2 [modified from 6]

The timing and amount ECM deposition defines tissue maturation and structure-function relationships, and is uniquely tuned to enable musculoskeletal tissue function.

- Matrix stiffness increases mechanobiologic signaling Stiff ECM (e.g., YAP nuclear localization) in MSCs⁷
- The link between mechanosensing and nascent matrix production has not yet been explored.
- To address this, we utilized tunable biomaterial substrates (norbornene modified HA hydrogels) to evaluate substrate stiffness and ECM formation.

YAP/TAZ Inactive

Figure 2: Model depicting the relationship between substrate stiffness and cell spreading. Cells seeded onto stiffer gels spread more than cells on softer substrates [Adapted from 6]

Figure 6: OSMI-1 treatment reduces YAP N:C ratios to levels seen on soft substrates. For bMSCs, N=3 replicates, n=39-53 cells per condition. For 3T3 cells, N=2 replicates, n=14-30 cells per condition. *p<0.05

• Both cell types showed increased YAP N:C with increased substrate stiffness • OGT inhibition resulted in lower YAP N:C ratios on stiff substrates, matching levels seen on soft substrates (5kPa)

• OGT inhibition did not alter YAP N:C ratios on 5kPa PA gels, where the ratio was already low

Substrate stiffness influences early, but not late nascent

OGT inhibition reduced the number of focal adhesions on 5kPa NorHA gels

Cell contractility regulates nascent matrix production

Methods

<u>Hydrogel fabrication</u>: Fibronectin-coated polyacrylamide (PA) gels were produced as in [8]. RGD-modified NorHA hydrogels were produced as in [9].

Functionalized Hydroge with R peptide

YAP/TAZ Active

Figure 3: Schematic of NorHA structure, crosslinking, and functionalization with ligands. NorHA is crosslinked with Irgacure under UV light with DTT as a crosslinker and is concurrently functionalized with a thiolated RGD peptide [adapted from 9].

Pharmacological inhibition: OGT was inhibited with OSMI-1 (at 50mM). Cell contractility was inhibited with Y-27632 (at 10uM) or increased with LPA (at 50uM).

Figure 4: Kinetics of O-GlcNAc addition and removal by OGT and O-GlcNAcase, respectively. OSMI-1 inhibits OGT, while PUGNAc inhibits O-GlcNAcase.

<u>AHA labeling</u>: To identify nascent matrix, cells were cultured in media containing AHA, a methionine substitute. DBCO-488 was used to label all proteins containing AHA, with labeling performed on live cells prior to fixation. A membrane stain was used to create a cell mask in order to identify extracellular proteins.

Figure 4: Model showing how secreted proteins are labeled. AHA is used as a methionine analog and proteins that have incorporated AHA are visualized with DBCO-488 using cyclo-addition.

Figure 8: Substrate stiffness increases nascent matrix deposition. hMSCs were seeded onto RGD-modified NorHA gels for the times indicated. N=3 replicates, n=20-25 cells per condition. *p<0.05

- Cells on 15kPa NorHA gels deposited more nascent matrix than on 5kPa NorHA gels after 1 day
- After 3 days, matrix deposition was similar, regardless of substrate stiffness

Discussion

- Glucose availability is the limiting reagent in O-GlcNAc modifications and tissue possess unique glucose availability⁵.
- It could be that cells modulate mechanotransduction through metabolism.
- Further work will be done to:
 - Evaluate the consequences of early vs. late matrix deposition in MSC differentiation.
 - Elucidate possible cross-talk

nascent matrix production.

Figure 9: Contractility regulates nascent matrix production. N=3 replicates, n=20-25 cells per condition. *p-value < 0.05.

- Nascent matrix deposition is rescued on soft substrates by increasing contractility
- On stiffer substrates, nascent matrix deposition is abrogated by reducing contractility

Image and statistical analysis: YAP N:C ratios were determined as in [8] with ImageJ. Nascent matrix was quantified as depicted in Figure 5 using ImageJ. Statistical analysis was performed by one-way ANOVA with Tukey's post-hoc tests.

Figure 5: Schematic for method of determining extracellular protein amount. Cellmask was used to stain the membrane to eliminate membrane bound proteins, DBCO-488 was used to identify secreted proteins that had incorporated the AHA. These two images were overlayed and subtracted to yield a resultant image that contained non-membrane associated proteins. ECM volume was normalized by dividing by the total cell volume.

Figure 10: Working hypothetical model of the intersection between ECM and metabolism in a mechanobiologic setting. ? Indicate future studies, green up arrows indicate promotion or increase. Molecules not to scale

[1] Dupont, S. et al., Nature, 7350: 179–183, 2011. [2] Halder, G. et al., Nat. Rev. Mol. Cell Biol., 9: 591–600,2012. [3] Zhang, X. et al., Nat. Commun., 8: 15280, 2017. [4] Peng, C. et al., Mol. Cell, 3:591-604, 2017. [5] Hart G. et al., Essentials of Glycobiology. 2nd edition. Cold Spring Harbor Laboratory Press, 2009. [6] Dupont, S. Exp. Cell Res., 1: 42–53, 2016. [7] Smith et al. Physiology., 33(1): 16–25., 2018. [8] Dupont et al., Nature 474(7350):179-83 2011. [9] Vega et al. Nature Comm. 9;9(1):614 2018.

This work was supported by the Penn Center for Musculoskeletal Disorders, the Department of Veterans Affairs, and the Center for Engineering Mechanobiology.

ECM